
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: CPU Scheduling

 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Thread Scheduling
 Multiple-Processor Scheduling
 Real-Time CPU Scheduling
 Algorithm Evaluation

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce CPU scheduling, which is the basis for
multiprogrammed operating systems

 To describe various algorithms for CPU-scheduling
 To discuss evaluation criteria for selecting a CPU-scheduling

algorithm for a particular system

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Concepts

 Maximum CPU utilization obtained with
multiprogramming
 waiting for I/O is wasteful
 1 thread will utilize only 1 core

 CPU–I/O Burst Cycle
 Process execution consists of:

 a cycle of CPU execution
 and I/O wait

 CPU burst followed by I/O burst
 CPU burst distribution is of main concern

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Histogram of CPU-burst Times of a Process

 Large number of short CPU bursts
 Small number of large CPU bursts
 Distribution can dictate a choice of an CPU-scheduling algo

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recap: Diagram of Process State

 As a process executes, it changes state
 new: The process is being created
 ready: The process is waiting to be assigned to a processor
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 terminated: The process has finished execution

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Levels of Scheduling

 High-Level Scheduling
 See Long-term scheduler or Job Scheduling from Chapter 3
 Selects jobs allowed to compete for CPU and other system resources.

 Intermediate-Level Scheduling
 See Medium-Term Scheduling from Chapter 3
 Selects which jobs to temporarily suspend/resume to smooth

fluctuations in system load.
 Low-Level (CPU) Scheduling or Dispatching

 Selects the ready process that will be assigned the CPU.
 Ready Queue contains PCBs of processes.

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler
 Short-term scheduler

 Selects 1 process from the ready queue
 then allocates the CPU to it

 Queue may be ordered in various ways
 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is called nonpreemptive (=cooperative)
 All other scheduling is called preemptive

 Process can be interrupted and must release the CPU
 Special care should be taken to prevent problems that can arise

 Access to shared data – race condition can happen, if not handled
 Etc.

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

 Dispatcher
 a module that gives control of the CPU to the process

selected by the short-term scheduler; this involves:
 switching context
 switching to user mode
 jumping to the proper location in the user program to

restart that program
 Dispatch latency

 Time it takes for the dispatcher to stop one process and
start another running

 This time should be as small as possible

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

 How do we decide which scheduling algorithm is good?
 Many criteria for judging this has been suggested

 Which characteristics considered can change significantly
which algo is considered the best

 CPU utilization – keep the CPU as busy as possible
 Throughput – # of processes that complete their execution per

time unit
 Turnaround time – amount of time to execute a particular

process
 Waiting time – amount of time a process has been waiting in the

ready queue
 Response time – amount of time it takes to stat responding

 Used for interactive systems
 Time from when a request was submitted until the first

response is produced

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization
 Max throughput
 Min turnaround time
 Min waiting time
 Min response time

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case

 Hence, average waiting time of FCFS not minimal
 And it may vary substantially

 FCFS is nonpreemptive
 Not a good idea for timesharing systems

 FCFS suffers from the convoy effect, explained next

P1

0 3 6 30

P2 P3

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS Scheduling: Convoy Effect
 Convoy effect – when several short processes wait for long a

process to get off the CPU
 Assume

 1 long CPU-bound process
 Many short I/O-bound processes

 Execution:
 The long one occupies CPU

 The short ones wait for it: no I/O is done at this stage
 No overlap of I/O with CPU utilizations

 The long one does its first I/O
 Releases CPU
 Short ones are scheduled, but do I/O, release CPU quickly

 The long one occupies CPU again, etc
 Hence low CPU and device utilization

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst
 SJF uses these lengths to schedule the process with the shortest time

 Notice, the burst is used by SJF,
 not the process end-to-end running time

 implied by word “job” in SJF
 Hence, it should be called ``Shorted-Next-CPU-Burst”
 However, “job” is used for historic reasons

 Two versions of SJF: preemptive and nonpreemptive
 Assume

 A new process Pnew arrives while the current one Pcur is still executing
 The burst of Pnew is less than what is left of Pcur

 Nonpreemptive SJF – will let Pcur finish
 Preemptive SJF – wil preempt Pcur and let Pnew execute

 This is also called shortest-remaining-time-first scheduling

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

SJF (Cont.)
 Advantage:

 SJF is optimal in terms of the average waiting time
 Challenge of SJF:

 Hinges on knowing the length of the next CPU burst
 But how can we know it?
 Solutions: ask user or estimate it

 In a batch system and long-term scheduler
 Could ask the user for the job time limit
 The user is motivated to accurately estimate it

– Lower value means faster response
– Too low a value will cause time-limit violation and job rescheduling

 In a short-term scheduling
 Use estimation
Will be explained shortly

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of SJF

ProcessArrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3

0 3 24

P4 P1

169

P2

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Estimating Length of Next CPU Burst

 For short-term scheduling SJF needs to estimate the burst length
 Then pick process with shortest predicted next CPU burst

 Idea:
 use the length of previous CPU bursts
 apply exponential averaging

 Commonly, α set to ½

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Prediction of the Length of the Next CPU Burst

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Exponential Averaging



 α =0
 τn+1 = τn

 Recent history does not count
 α =1

 τn+1 = α tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn -1 + …

+(1 - α)j α tn -j + …
+(1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor

() .1 1 nnn t ταατ −+==

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to
the analysis

ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5
msec

P4

0 1 26

P1 P2

10

P3P1

5 17

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)
 Preemptive
 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

 Problem ≡ Starvation – low priority processes may never execute

 Solution ≡ Aging – as time progresses increase the priority of the
process

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)
 Each process gets a small unit of CPU time

 Time quantum q
 Usually 10-100 milliseconds

 After this time has elapsed:
 the process is preempted and
 added to the end of the ready queue

 The process might run for ≤ q time
 For example, when it does I/O

 If
 n processes in the ready queue, and
 the time quantum is q

 then
 “Each process gets 1/n of the CPU time”

 Incorrect statement from the textbook
 in chunks of ≤ q time units at once
 Each process waits ≤ (n-1)q time units

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (cont.)

 Timer interrupts every quantum to schedule next process
 Performance

 q large ⇒ FIFO
 q small ⇒ overhead of context switch time is too high

 Hence, q should be large compared to context switch time
 q usually 10ms to 100ms,
 context switch < 10 usec

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

The smaller the quantum, the higher is the number of context switches.

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

 The Gantt chart is:

 Typically:
 Higher average turnaround (end-to-end running time) than SJF
 But better response than SJF

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

6.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

 Another class of scheduling algorithms when processes are
classified into groups, for example:
 foreground (interactive) processes
 background (batch) processes

 Ready queue is partitioned into separate queues, e.g.:
 Foreground and background queues

 Process is permanently assigned to one queue
 Each queue has its own scheduling algorithm, e.g.:

 foreground – RR
 background – FCFS

6.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

 Scheduling must be done between the queues:
 Fixed priority scheduling

 For example, foreground queue might have absolute priority
over background queue

– Serve all from foreground then from background
– Possibility of starvation

 Time slice scheduling
 Each queue gets a certain amount of CPU time which it can

schedule amongst its processes, e.g.:
– 80% to foreground in RR
– 20% to background in FCFS

6.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

No student process can run until all queues above are empty

6.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue
 The previous setup: a process is permanently assigned to one queue

 Advantage: Low scheduling overhead
 Disadvantage: Inflexible

 Multilevel-feedback-queue scheduling algorithm
 Allows a process to move between the various queues

More flexible
 Idea: separate processes based on the characteristics of their CPU bursts
 If a process uses too much CPU time => moved to lower-priority queue

 Keeps I/O-bound and interactive processes in the high-priority queue
 A process that waits too long can be moved to a higher priority queue

 This form of aging can prevent starvation

6.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue
 Multilevel-feedback-queue scheduler defined by the following parameters:

 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will enter when that

process needs service
 Multilevel-feedback-queue scheduler

 The most general CPU-scheduling algorithm
 It can be configured to match a specific system under design
 Unfortunately, it is also the most complex algorithm

 Some means are needed to select values for all the parameters

6.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue
 Three queues:

 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS
 A process in Q1 will preempt any process from Q2,

but will be executed only if Q0 is empty

 Scheduling
 A new job enters queue Q0 which is served FCFS

 When it gains CPU, job receives 8 ms
 If it does not finish in 8 milliseconds

– job is moved to queue Q1

 At Q1 job is again served FCFS and receives 16
additional milliseconds
 This happens only if is Q0 empty
 If it still does not complete, it is preempted and

moved to queue Q2

 Processed in Q2 run only when Q0 and Q1 empty
 In this example priority is given to processes with bursts

less than 8 ms.
 Long processed automatically sink to queue Q2

6.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiple-Processor Scheduling

 Multiple CPUs are available
 Load sharing becomes possible
 Scheduling becomes more complex

 Solutions: Have one ready queue accessed by each CPU
 Self scheduled - each CPU dispatches a job from ready Q

 Called symmetric multiprocessing (SMP)
 Virtually all modern OSes support SMP

 Master-Slave - one CPU schedules the other CPUs
 The others run user code
 Called asymmetric multiprocessing
 One processor accesses the system data structures

– Reduces the need for data sharing

6.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling
 Special issues need to be considered for real-time CPU scheduling

 They are different for soft vs hard real-time systems
 Soft real-time systems

 Gives preference to critical processed over over non-critical ones
 But no guarantee as to when critical real-time process will be scheduled

 Hard real-time systems
 Task must be serviced by its deadline
 Otherwise, considered failure

 Real-time systems are often event-driven
 The system must detect the event has occurred
 Then respond to it as quickly as possible
 Event latency – amount of time from when event occurred to when it is

services
 Different types of events will have different event latency requirements

6.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling
 Two types of latencies affect performance
1. Interrupt latency

 time from arrival of interrupt to start of
routine that services interrupt

 Minimize it for soft real-time system
 Bound it for hard real-time

2. Dispatch latency
 time for scheduler to take current

process off CPU and switch to another
 Must also be minimized

6.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time CPU Scheduling (Cont.)

 Conflict phase of
dispatch latency:

1. Preemption of
any process
running in kernel
mode

2. Release by low-
priority process
of resources
needed by high-
priority
processes

6.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Inversion and Inheritance

 Issues in real-time scheduling
 Problem: Priority Inversion

 Higher Priority Process needs kernel resource currently being
used by another lower priority process
 higher priority process must wait.

 Solution: Priority Inheritance
 Low priority process now inherits high priority until it has

completed use of the resource in question.

6.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Many Different Real-Time Schedulers

 Priority-based scheduling
 Rate-monotonic scheduling
 Earliest-deadline scheduling
 Proportional share scheduling
 …

6.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm Evaluation

 How to select CPU-scheduling algorithm for an OS?
 Determine criteria, then evaluate algorithms

 Evaluation Methods
 Deterministic modeling
 Queuing models
 Simulations
 Implementation

6.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deterministic Modeling

 Analytic evaluation – class of evaluation methods such that
 Given: scheduling algorithm A and system workload W
 Produces: formula or a number to evaluate the performance of A one W

 Deterministic modeling
 Type of analytic evaluation
 Takes a particular predetermined workload and defines the performance

of each algorithm for that workload
 Consider 5 processes arriving at time 0:

6.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deterministic Evaluation

 Find which algorithm gets the minimum of the average waiting time
 FCFS is 28ms:

 Non-preemptive SFJ is 13ms:

 RR is 23ms:

 Pros: Simple and fast
 Cons: Requires exact workload, the outcomes apply only to that

workload

6.74 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Queueing Models

 Defines a probabilistic model for
 Arrival of processes
 CPU bursts
 I/O bursts

 Computes stats
 Such as: average throughput, utilization, waiting time, etc
 For different scheduling algorithms

6.75 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Little’s Formula

 n = average queue length
 W = average waiting time in queue
 λ = average arrival rate into queue
 Little’s law – in steady state, processes leaving queue must equal

processes arriving, thus:
n = λ x W

 Valid for any scheduling algorithm and arrival distribution
 For example, if on average 7 processes arrive per second, and

normally 14 processes in queue, then average wait time per
process = 2 seconds

6.76 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simulations

 Simulations more accurate evaluation of scheduling algorithms
 than limited Queuing models

 Need to program a model of computer system
 Clock is represented as a variable

 As it increases, the simulator changes the state of the system
 Gather statistics indicating algorithm performance during simulation
 Data to drive simulation gathered via

 Random number generator according to probabilities
 Distributions defined mathematically or empirically
 Use trace tapes - records of sequences of real events in real systems

 This sequence is used then to drive the simulation

6.78 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Implementation

 Even simulations have limited accuracy
 Just implement new scheduler and test in real systems

 Cons: Environments vary over time – e.g., users might see a
new scheduler and change the way their programs behaves,
thus changing the environment

 In general, scheduling needs might be different for different sets of
apps
 Hence, most flexible schedulers are those can be

modified/tuned for specific apps or a set of apps
 For example, some versions of UNIX allow sysadmins to

fine-tune the scheduling parameters

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

	Chapter 6: CPU Scheduling
	Chapter 6: CPU Scheduling
	Objectives
	Basic Concepts
	Histogram of CPU-burst Times of a Process
	Recap: Diagram of Process State
	Levels of Scheduling
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First- Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	FCFS Scheduling: Convoy Effect
	Shortest-Job-First (SJF) Scheduling
	SJF (Cont.)
	Example of SJF
	Estimating Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Example of Shortest-remaining-time-first
	Priority Scheduling
	Example of Priority Scheduling
	Round Robin (RR)
	Round Robin (cont.)
	Time Quantum and Context Switch Time
	Example of RR with Time Quantum = 4
	Multilevel Queue
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multiple-Processor Scheduling
	Real-Time CPU Scheduling
	Real-Time CPU Scheduling
	Real-Time CPU Scheduling (Cont.)
	Priority Inversion and Inheritance
	Many Different Real-Time Schedulers
	Algorithm Evaluation
	Deterministic Modeling
	Deterministic Evaluation
	Queueing Models
	Little’s Formula
	Simulations
	Implementation
	End of Chapter 6

