Chapter 6: CPU Scheduling

Operating System Concepts — 9t Edition Silberschatz, Galvin and Gagne ©2013

5 Chapter 6: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Real-Time CPU Scheduling
Algorithm Evaluation

SERRAN
e |

'

L whdily

S

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.2

ngF Objectives

® Tointroduce CPU scheduling, which is the basis for
multiprogrammed operating systems

To describe various algorithms for CPU-scheduling

To discuss evaluation criteria for selecting a CPU-scheduling
algorithm for a particular system

Operating System Concepts — 9t Edition 6.3 Silberschatz, Galvin and Gagne ©2013

)

. r & Basic Concepts

B Maximum CPU utilization obtained with
multiprogramming

e waiting for 1/O is wasteful
e 1 thread will utilize only 1 core
m CPU-I/O Burst Cycle
e Process execution consists of:
» acycle of CPU execution
» and 1/0 wait
m CPU burst followed by I/O burst
m CPU burst distribution is of main concern

Operating System Concepts — 9t Edition 6.4

load store
add store
read from file

wait for /O

store increment
index
write to file

wait for I/0

load store
add store
read from file

wait for I/0O

CPU burst

|/O burst

CPU burst

I/O burst

CPU burst

I/0O burst

Silberschatz, Galvin and Gagne ©2013

=

“$»7Histogram of CPU-burst Times of a Process

160 |-

140

frequency

]] 1 !

16 24 32 40
burst duration (milliseconds)

Y

= Large number of short CPU bursts
= Small number of large CPU bursts -
= Distribution can dictate a choice of an CPU-scheduling algo

Operating System Concepts — 9™ Edition 6.5 Silberschatz, Galvin and Gagne ©2013

'M
PN

. w—/ Recap: Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

B As a process executes, it changes state
e new: The process is being created
e ready: The process is waiting to be assigned to a processor
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e terminated: The process has finished execution

Operating System Concepts — 9t" Edition 6.6 Silberschatz, Galvin and Gagne ©2013

r o Levels of Scheduling

m High-Level Scheduling

e See Long-term scheduler or Job Scheduling from Chapter 3

e Selects jobs allowed to compete for CPU and other system resources.
®m Intermediate-Level Scheduling

e See Medium-Term Scheduling from Chapter 3

e Selects which jobs to temporarily suspend/resume to smooth
fluctuations in system load.

m Low-Level (CPU) Scheduling or Dispatching
e Selects the ready process that will be assigned the CPU.
e Ready Queue contains PCBs of processes.

£ ~ .“ ‘_. A\ "
-//"%;; B
o j%{:f

Al U

Operating System Concepts — 9t" Edition 6.7 Silberschatz, Galvin and Gagne ©2013

_!..A

{-3’3 CPU Scheduler

B Short-term scheduler

m Selects 1 process from the ready queue
m then allocates the CPU to it
e Queue may be ordered in various ways
m CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
m Scheduling under 1 and 4 is called nonpreemptive (=cooperative)
m All other scheduling is called preemptive
m Process can be interrupted and must release the CPU
e Special care should be taken to prevent problems that can arise
e Access to shared data — race condition can happen, if not handled ==

. Etc 23

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.8

'M

e {:ﬁ Dispatcher

m Dispatcher

e a module that gives control of the CPU to the process
selected by the short-term scheduler; this involves:

» switching context
» switching to user mode

» jumping to the proper location in the user program to
restart that program

B Dispatch latency

e Time it takes for the dispatcher to stop one process and
start another running

e This time should be as small as possible

Operating System Concepts — 9t" Edition 6.9 Silberschatz, Galvin and Gagne ©2013

"S55 Scheduling Criteria

How do we decide which scheduling algorithm is good?
Many criteria for judging this has been suggested

e Which characteristics considered can change significantly
which algo is considered the best

m CPU utilization — keep the CPU as busy as possible

®m Throughput — # of processes that complete their execution per
time unit

® Turnaround time — amount of time to execute a particular
process

® Waiting time — amount of time a process has been waiting in the
ready queue

m Response time — amount of time it takes to stat responding
e Used for interactive systems

e Time from when a request was submitted until the first

response is produced —/"‘5»%1

Operating System Concepts — 9t Edition 6.10 Silberschatz, Galvin and Gagne ©2013

=

,}’&5 Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

“

Operating System Concepts — 9t" Edition 6.11 Silberschatz, Galvin and Gagne ©2013

*av’ First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P, 3

®m Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

m Waiting time for P, =0; P, =24; P;=27
m Average waiting time: (0 +24 + 27)/3 =17

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.12

'7';

» S—
r & FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:

PZ ' PB ' Pl
B The Gantt chart for the schedule is:

30

Waiting time for P, =6;P,=0.P;=3
Average waiting time: (6 + 0+ 3)/3=3
® Much better than previous case
m Hence, average waiting time of FCFS not minimal
= And it may vary substantially
m FCFS is nonpreemptive
e Not a good idea for timesharing systems
m FCFS suffers from the convoy effect, explained next

/‘»““ -'\1

Operating System Concepts — 9" Edition 6.13 Silberschatz, Galvin and Gagne ©2013

=
S

.

“#7/ FCFS Scheduling: Convoy Effect

m Convoy effect —when several short processes wait for long a
process to get off the CPU

m Assume
m 1 long CPU-bound process
m Many short I/O-bound processes
m Execution:
e The long one occupies CPU
e The short ones wait for it: no I/O is done at this stage
e No overlap of /0 with CPU utilizations
e The long one does its first I/O
e Releases CPU
e Short ones are scheduled, but do I/O, release CPU quickly
e The long one occupies CPU again, etc
m Hence low CPU and device utilization

Operating System Concepts — 9th Edition 6.14 Silberschatz, Galvin and Gagne ©2013

S
- W"“hl

o Shortest-Job-First (SJF) Scheduling

m Associate with each process the length of its next CPU burst
e SJF uses these lengths to schedule the process with the shortest time
m Notice, the burst is used by SJF,
e not the process end-to-end running time
» implied by word “job” in SJF
e Hence, it should be called "Shorted-Next-CPU-Burst”
e However, “job” is used for historic reasons

m Two versions of SJF: preemptive and nonpreemptive
e Assume
» A new process Pnew arrives while the current one Pcur is still executing
» The burst of Pnew is less than what is left of Pcur
e Nonpreemptive SJF — will let Pcur finish
e Preemptive SJF — wil preempt Pcur and let Pnew execute
» This is also called shortest-remaining-time-first scheduling

Operating System Concepts — 9t" Edition 6.15 Silberschatz, Galvin and Gagne ©2013

. ;:i SJF (Cont.)

m Advantage:

e SJFis optimal interms of the average waiting time
m Challenge of SJF:
e Hinges on knowing the length of the next CPU burst
» But how can we know it?
» Solutions: ask user or estimate it
e In a batch system and long-term scheduler
» Could ask the user for the job time limit

» The user is motivated to accurately estimate it
Lower value means faster response
Too low a value will cause time-limit violation and job rescheduling

e In a short-term scheduling
» Use estimation
» Will be explained shortly

Operating System Concepts — 9t" Edition 6.16 Silberschatz, Galvin and Gagne ©2013

G Example of SJF

Process Burst Time
P, 6
P, 8
P I
P, 3

m Average waitingtime=(3+16+9+0)/4=7

Operating System Concepts — 9t" Edition 6.17 Silberschatz, Galvin and Gagne ©2013

=

n‘;—"’i c Estimating Length of Next CPU Burst

m For short-term scheduling SJF needs to estimate the burst length

e Then pick process with shortest predicted next CPU burst
m |dea:

e use the length of previous CPU bursts
e apply exponential averaging

1. t, =actual length of n" CPU burst

2. 1,1 = predicted value for the next CPU burst
3. a,0<a<1

4. Define: 7, =at,+(1-a)7,

B Commonly, a setto Y2

Operating System Concepts — 9t" Edition 6.18 Silberschatz, Galvin and Gagne ©2013

12 /—/'_
10 yd
' /

8 //
tl

6 _/,

4

2

CPU burst (t) 6 4 6 4 13 13 13

"guess" (t) 10 8 6 6 5 9 11 12

A

Operating System Concepts — 9t Edition 6.19 Silberschatz, Galvin and Gagne ©2013

=
S

)

o %7/ Examples of Exponential Averaging

m o =at +(1-a)r,
m a=0

® Th1 =T

e Recent history does not count
m o=l

® T —Q 1:n

e Only the actual last CPU burst counts
m [f we expand the formula, we get:

Ty —oat+l-a)at, ;+
+1-a)at, gt

+(1-a)" 1

m Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor

Operating System Concepts — 9" Edition 6.20 Silberschatz, Galvin and Gagne ©2013

"‘M

)

. *“",’ Example of Shortest-remaining-time-first

® Now we add the concepts of varying arrival times and preemption to

the analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5
® Preemptive SJF Gantt Chart
P, P, P, P, P,
0 1 5 10 17 26
B Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5
msec

Operating System Concepts — 9t" Edition 6.21 Silberschatz, Galvin and Gagne ©2013

g Priority Scheduling

B A priority number (integer) is associated with each process

m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
e Nonpreemptive

m SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

m Problem = Starvation — low priority processes may never execute

B Solution = Aging — as time progresses increase the priority of the
process

Operating System Concepts — 9t" Edition 6.22 Silberschatz, Galvin and Gagne ©2013

S Example of Priority Scheduling

= \f! F',\
= \)
7 O

Process Burst Time Priority

P 10 3
P 1 1
P 2 -+
Py 1 5
Ps 5 2

®m Priority scheduling Gantt Chart

0 1 6 16 18 19

m Average waiting time = 8.2 msec

o '3"l" Wl
T e T |
SN
d “\':
U -J.'i‘--' '

Operating System Concepts — 9" Edition 6.23 Silberschatz, Galvin and Gagne ©2013

"4

x,‘::i Round Robin (RR)

m Each process gets a small unit of CPU time
e Time quantum (
e Usually 10-100 milliseconds
m After this time has elapsed:
e the process is preempted and
e added to the end of the ready queue
m The process might run for < g time
e For example, when it does I/O
m f
® n processes in the ready queue, and
e the time quantum s g

m then
e “Each process gets 1/n of the CPU time”
» Incorrect statement from the textbook
e in chunks of < g time units at once

e Each process waits < (n-1)g time units
Operating System Concepts — 9th Edition 6.24 Silberschatz, Galvin and Gagne ©2013

"‘M

M“I—"‘i Round Robin (cont.)

® Timer interrupts every quantum to schedule next process

m Performance
e (g large = FIFO
e ¢ small = overhead of context switch time is too high
m Hence, g should be large compared to context switch time
e (¢ usually 10ms to 100ms,
e context switch < 10 usec

Operating System Concepts — 9t" Edition 6.25 Silberschatz, Galvin and Gagne ©2013

s

wg%7 Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

The smaller the quantum, the higher is the number of context switches.

Operating System Concepts — 9™ Edition 6.26 Silberschatz, Galvin and Gagne ©2013

'M

)

s %77 Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
P, 3

m Typically:
e Higher average turnaround (end-to-end running time) than SJF
e But better response than SJF

Ja .\."\l.|_.

D - I::I
e) |
%
“l A8 2

Operating System Concepts — 9™ Edition 6.27 Silberschatz, Galvin and Gagne ©2013

P> Multilevel Queue

® Another class of scheduling algorithms when processes are
classified into groups, for example:

e foreground (interactive) processes
e background (batch) processes
® Ready queue is partitioned into separate queues, e.g.:

e Foreground and background queues

Process is permanently assigned to one queue

Each queue has its own scheduling algorithm, e.g.:
e foreground — RR
e background — FCFS

Operating System Concepts — 9t" Edition 6.29 Silberschatz, Galvin and Gagne ©2013

=
S

- W"‘l

G Multilevel Queue

m Scheduling must be done between the queues:
e Fixed priority scheduling

» For example, foreground queue might have absolute priority
over background queue

Serve all from foreground then from background
Possibility of starvation
e Time slice scheduling

» Each queue gets a certain amount of CPU time which it can
schedule amongst its processes, e.g.:

80% to foreground in RR
20% to background in FCFS

/‘»““ -'\1

Operating System Concepts — 9t" Edition 6.30 Silberschatz, Galvin and Gagne ©2013

Multilevel Queue Scheduling

highest priority

> interactive editing processes _—
— batch processes E—
E— student processes ————

lowest priority

No student process can run until all queues above are empty

A4 W
Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.31

) g— j .
v-f Multilevel Feedback Queue

m The previous setup: a process is permanently assigned to one queue
e Advantage: Low scheduling overhead
e Disadvantage: Inflexible

m Multilevel-feedback-queue scheduling algorithm
e Allows a process to move between the various queues
» More flexible
e |dea: separate processes based on the characteristics of their CPU bursts
e If a process uses too much CPU time => moved to lower-priority queue
» Keeps I/0O-bound and interactive processes in the high-priority queue
e A process that waits too long can be moved to a higher priority queue
» This form of aging can prevent starvation

/‘»““ \1

Operating System Concepts — 9™ Edition 6.32 Silberschatz, Galvin and Gagne ©2013

N
i -
ot WP"-&
- b

v" Multilevel Feedback Queue

m Multilevel-feedback-queue scheduler defined by the following parameters:
e number of queues
e scheduling algorithms for each queue
e method used to determine when to upgrade a process
e method used to determine when to demote a process

e method used to determine which queue a process will enter when that
process needs service

m Multilevel-feedback-gueue scheduler
e The most general CPU-scheduling algorithm
e It can be configured to match a specific system under design
e Unfortunately, it is also the most complex algorithm
» Some means are needed to select values for all the parameters

Operating System Concepts — 9t" Edition 6.33 Silberschatz, Galvin and Gagne ©2013

e,
‘14::;

> w-*saj

4% Example of Multilevel Feedback Queue

m Three queues:

* Q,— RR with time quantum 8 milliseconds e "
—_— guantum = 8

e Q;—RRtime quantum 16 milliseconds
e Q,-FCFS

e A processin Q; will preempt any process from Q,, P
but will be executed only if Q, is empty

m Scheduling

e A new job enters queue Q, which is served FCFS

v

h 4

quantum = 16

» When it gains CPU, job receives 8 ms FCFS S

L 4

» If it does not finish in 8 milliseconds
job is moved to queue Q,

e AtQ, jobis again served FCFS and receives 16
additional milliseconds

» This happens only if is Q, empty

» If it still does not complete, it is preempted and
moved to queue Q,

e Processed in Q, run only when Q,and Q; empty

® In this example priority is given to processes with bursts
less than 8 ms.

® Long processed automatically sink to queue Q,

Operating System Concepts — 9t Edition 6.34 Silberschatz, Galvin and Gagne ©2013

"‘M

)

H*’ Multiple-Processor Scheduling

m Multiple CPUs are available
e |oad sharing becomes possible
e Scheduling becomes more complex
m Solutions: Have one ready queue accessed by each CPU
e Self scheduled - each CPU dispatches a job from ready Q
» Called symmetric multiprocessing (SMP)
» Virtually all modern OSes support SMP
e Master-Slave - one CPU schedules the other CPUs
» The others run user code
» Called asymmetric multiprocessing
» One processor accesses the system data structures
Reduces the need for data sharing

Operating System Concepts — 9t" Edition 6.40 Silberschatz, Galvin and Gagne ©2013

=
S

,thl

S5 Real-Time CPU Scheduling

B Special issues need to be considered for real-time CPU scheduling

e They are different for soft vs hard real-time systems
m Soft real-time systems

e Gives preference to critical processed over over non-critical ones

e But no guarantee as to when critical real-time process will be scheduled
B Hard real-time systems

e Task must be serviced by its deadline

e Otherwise, considered failure
B Real-time systems are often event-driven

e The system must detect the event has occurred

e Then respond to it as quickly as possible

e Event latency — amount of time from when event occurred to when it is
services

e Different types of events will have different event latency requirements

Operating System Concepts — 9t" Edition 6.45 Silberschatz, Galvin and Gagne ©2013

"‘M

)

G .,,,,-/ Real-Time CPU Scheduling

m Two types of latencies affect performance
1. Interrupt latency

e time from arrival of interrupt to start of
routine that services interrupt

e Minimize it for soft real-time system
e Bound it for hard real-time
2. Dispatch latency

e time for scheduler to take current
process off CPU and switch to another

e Must also be minimized

Operating System Concepts — 9t" Edition 6.46 Silberschatz, Galvin and Gagne ©2013

™

u::"* Real-Time CPU Scheduling (Cont.)

m Conflict phase of event response to event
dispatch latency:

response interval P>

1. Preemption of process made
interrupt available
any proc_ess processing
running in kernel
mode

A

«— dispatch latency ———;

real-time

2. R(_ele_ase by low- process
priority process execution -

l -

of resources e—— conflicts —»te— dispatch —»

needed by high-
priority
processes

time

- .\.'\l- W\
D - I::I
- T
A A9

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.47

"‘M

)

“V’ Priority Inversion and Inheritance

®m [ssues in real-time scheduling
® Problem: Priority Inversion

e Higher Priority Process needs kernel resource currently being
used by another lower priority process

» higher priority process must walit.
m Solution: Priority Inheritance

e Low priority process now inherits high priority until it has
completed use of the resource in question.

Operating System Concepts — 9t" Edition 6.48 Silberschatz, Galvin and Gagne ©2013

“#7/Many Different Real-Time Schedulers

Priority-based scheduling
Rate-monotonic scheduling
Earliest-deadline scheduling
Proportional share scheduling

Operating System Concepts — 9t" Edition 6.49 Silberschatz, Galvin and Gagne ©2013

=
m.&

u.—/ Algorithm Evaluation

®m How to select CPU-scheduling algorithm for an OS?
e Determine criteria, then evaluate algorithms
m Evaluation Methods
e Deterministic modeling
e Queuing models
e Simulations
e Implementation

Operating System Concepts — 9t Edition 6.71 Silberschatz, Galvin and Gagne ©2013

S

o Deterministic Modeling

m Analytic evaluation — class of evaluation methods such that

e Given: scheduling algorithm A and system workload W

e Produces: formula or a number to evaluate the performance of A one W
m Deterministic modeling

e Type of analytic evaluation

e Takes a particular predetermined workload and defines the performance
of each algorithm for that workload

m Consider 5 processes arriving at time 0O:

Process Burst Time

P 10
) 29
P; 3
Py 7
Ps 12

Operating System Concepts — 9t" Edition 6.72 Silberschatz, Galvin and Gagne ©2013

"‘M

pu— .. . -
s v’ Deterministic Evaluation

® Find which algorithm gets the minimum of the average waiting time

e FCFS s 28ms;:

P, P, Pal P, Py

0 10 39 42 49 61

e Non-preemptive SFJ is 13ms:

EN 2 P, A
0 3 10 20 32 61
e RRIs 23ms:
i2 R 128 P, T
0 10 20 23 30 40 50 52 61

e Pros: Simple and fast
Cons: Requires exact workload, the outcomes apply only to that ="

workload ..
£
Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.73

=

S

-

o Queueing Models

®m Defines a probabilistic model for
e Arrival of processes
e CPU bursts
e 1/O bursts
m Computes stats
e Such as: average throughput, utilization, waiting time, etc
e For different scheduling algorithms

Operating System Concepts — 9t" Edition 6.74 Silberschatz, Galvin and Gagne ©2013

. |

A
q
ter

,thj

o Little’ s Formula

n = average gueue length
W = average waiting time in queue
A = average arrival rate into queue

Little’ s law — in steady state, processes leaving queue must equal
processes arriving, thus:
nN=AxXW

e Valid for any scheduling algorithm and arrival distribution

m For example, if on average 7 processes arrive per second, and
normally 14 processes in queue, then average wait time per
process = 2 seconds

Operating System Concepts — 9™ Edition 6.75 Silberschatz, Galvin and Gagne ©2013

B Simulations more accurate evaluation of scheduling algorithms
e than limited Queuing models
m Need to program a model of computer system
m Clock is represented as a variable
e As itincreases, the simulator changes the state of the system
Gather statistics indicating algorithm performance during simulation
Data to drive simulation gathered via
e Random number generator according to probabilities
e Distributions defined mathematically or empirically
e Use trace tapes - records of sequences of real events in real systems
» This sequence is used then to drive the simulation

\

- =S
’ﬂ“)
L g

'

s ."“

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.76

T Implementation

®m Even simulations have limited accuracy
®m Just implement new scheduler and test in real systems

m Cons: Environments vary over time — e.g., users might see a
new scheduler and change the way their programs behaves,
thus changing the environment

® In general, scheduling needs might be different for different sets of

apps
B Hence, most flexible schedulers are those can be
modified/tuned for specific apps or a set of apps

m For example, some versions of UNIX allow sysadmins to
fine-tune the scheduling parameters

. - ‘_. A _'_.::_‘
___,/’/:y-‘s‘-":— _.\‘\l
o h“%—(

A9

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t Edition 6.78

End of Chapter 6

Operating System Concepts — 9t Edition Silberschatz, Galvin and Gagne ©2013

	Chapter 6: CPU Scheduling
	Chapter 6: CPU Scheduling
	Objectives
	Basic Concepts
	Histogram of CPU-burst Times of a Process
	Recap: Diagram of Process State
	Levels of Scheduling
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First- Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	FCFS Scheduling: Convoy Effect
	Shortest-Job-First (SJF) Scheduling
	SJF (Cont.)
	Example of SJF
	Estimating Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Example of Shortest-remaining-time-first
	Priority Scheduling
	Example of Priority Scheduling
	Round Robin (RR)
	Round Robin (cont.)
	Time Quantum and Context Switch Time
	Example of RR with Time Quantum = 4
	Multilevel Queue
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multiple-Processor Scheduling
	Real-Time CPU Scheduling
	Real-Time CPU Scheduling
	Real-Time CPU Scheduling (Cont.)
	Priority Inversion and Inheritance
	Many Different Real-Time Schedulers
	Algorithm Evaluation
	Deterministic Modeling
	Deterministic Evaluation
	Queueing Models
	Little’s Formula
	Simulations
	Implementation
	End of Chapter 6

